
Contents

Application Note 

Document No.: AN1132 

G32R501 Zidian Application Note 

Version: V1.0 



Document No.: AN1132 

www.geehy.com    Page 1 

Introduction 

This application note introduces relevant content of G32R5xx Zidian, including basic 

introduction of Zidian and software design examples of the applications. 

http://www.geehy.com/


Document No.: AN1132 

www.geehy.com    Page 2 

Contents 

Introduction .....................................................................................................................1 

Zidian Overview ...............................................................................................................3 

Using Zidian to Accelerate Computation ........................................................................5 

Revision ......................................................................................................................... 11 

http://www.geehy.com/


Document No.: AN1132                                                 

 
www.geehy.com                                                                                Page 3 

 Zidian Overview 

Zidian is a mathematical extension instruction set designed for the G32R5xx series real-time 

control MCU, and it can effectively improve the performance of mathematical operations. 

 ICAU and FCAU 

In G32R5xx, there are two types of instruction extensions: CDE and FPCDE. 

For extension of CDE instructions, the instructions operate on general-purpose registers, and 

some specific instructions are implemented in Zidian to improve the performance of integer 

operations, including: 

⚫ Calculation requiring SIMD: FFT, complex operations, etc. 

⚫ CRC algorithm 

This set of instructions is called integer computation acceleration unit (ICAU). 

For extension of FPCDE instructions, the instructions only operate on floating-point registers, 

and some specific instructions are implemented in Zidian to improve the performance of 

floating-point operations, including: 

⚫ Trigonometric function 

⚫ Square root 

⚫ Division 

This set of instructions is called floating-point computation acceleration unit (FCAU). 

 CDE Built-in Functions 

By introducing the standardized built-in functions of CDE as part of the ARM C language 

extension, Tables 1 and 2 list the built-in functions supported by Zidian. 

Table 1 Built-in Functions Supported by ICAU 

Instruction type Built-in functions 

CX2 uint32_t __arm_cx2(int coproc, uint32_t n, uint32_t imm); 

CX2A 
uint32_t __arm_cx2a(int coproc, uint64_t acc, uint32_t n, 

uint32_t imm); 

CX2DA 
uint64_t __arm_cx2da(int coproc, uint64_t acc, uint32_t n, 

uint32_t imm); 

CX3 
uint32_t __arm_cx3(int coproc, uint32_t n, uint32_t m, 

uint32_t imm); 

CX3D 
uint64_t __arm_cx3d(int coproc, uint32_t n, uint32_t m, 

uint32_t imm); 

http://www.geehy.com/


Document No.: AN1132                                                 

 
www.geehy.com                                                                                Page 4 

Instruction type Built-in functions 

CX3DA 
uint64_t __arm_cx3da(int coproc, uint64_t acc, uint32_t n, 

uint32_t m, uint32_t imm); 

CX2 uint32_t __arm_cx2(int coproc, uint32_t n, uint32_t imm); 

Table 2 Built-in Functions Supported by FACU 

Instruction type Built-in functions 

VCX2 uint32_t __arm_vcx2(int coproc, uint32_t n, uint32_t imm); 

VCX3 
uint32_t __arm_vcx3(int coproc, uint32_t n, uint32_t m, 

uint32_t imm); 

Through these built-in functions, G32R5xx renames these instructions in Zidian. Table 3 takes 

the VCX3 instruction as an example and lists the renamed VCX3 functions in Zidian. 

Table 3 VCX3 Rename Function 

Instruction Zidian function 

VCX3 0, Sd, Sn, Sm, #0x0 DIVF32 Sd, Sn, Sm 

VCX3 0, Sd, Sn, Sm, #0x1 QUADF32 Sd, Sn, Sm 

VCX3 0, Sd, Sn, Sm, #0x2 DIVF32_ATAN2 Sd, Sn 

http://www.geehy.com/


Document No.: AN1132                                                 

 
www.geehy.com                                                                                Page 5 

 Using Zidian to Accelerate Computation 

 zidian_math.h 

In the file “zidian_cde.h”, the built-in functions are renamed through macro definition. If it is 

necessary to use Zidian for regular mathematical function operation in the driverlib library, the 

file “zidian_math.h” shall be included. Please refer to 3.3.1 for details. 

The file “zidian_math.h” repackages the commonly used mathematical functions. Table 4 lists 

the mathematical functions packaged in the “zidian_math.h” file. 

Table 4 zidian_math Function 

Zidian function Description 

__sinpuf32 Calculate the sine value 

__sin Normalize it to the [0, 2π) interval, and then calculate the 

sine value 

__cospuf32 Calculate the cosine value 

__cos 
Normalize it to the [0, 2π) interval, and then calculate the 

cosine value 

__atanpuf32 Calculate the arc tangent value 

__atan Calculate the arc tangent value 

__mpy2pif32 Single-precision floating-point multiplication 

__div2pif32 Single-precision floating-point division 

__sqrtf32 Square root of single-precision floating-point number 

__divf32 Floating-point division 

__quadf32 Calculate the quadrant values of X and Y 

__divf32_atan2 Calculate the ratio of X to Y 

__atan2puf32 atan2 

__atan2 atan2 

 Compiler Support 

At present, the SDK provides two environments of MDK-ARM and IAR, and the support of 

Zidan is slightly different under different compilers. 

3.2.1 MDK-ARM (AC6) 

In the option configuration card, add “-mcpu=cortex-m52+cdecp0” to the Misc Controls tab 

under the C/C++ (AC6) tab to enable the support. 

http://www.geehy.com/


Document No.: AN1132                                                 

 
www.geehy.com                                                                                Page 6 

Figure 1 AC6 Enabling CDE 

 

3.2.2 IAR（ICC） 

IAR EW for Arm support is compilation support. 

The compilation support can be enabled by checking Use command line options in Extra 

Options under C/C++ Compiler, and then adding “--cdecp=0” in the command line window. 

Figure 2 ICC Enables CDE Compilation 

 

 Software Design Examples 

This section takes the MDK-ARM environment as an example to introduce how to use Zidian to 

accelerate computation. 

3.3.1 Combining driverlib with Zidian to accelerate computation 

The specific steps for using Zidian for calculation in the SDK-driverlib routine are as follows: 

http://www.geehy.com/


Document No.: AN1132                                                 

 
www.geehy.com                                                                                Page 7 

⚫ Enable compiler support 

⚫ Add the “__ZIDIAN_FCAU__” macro under the C/C++ tab in the engineering configuration 

to redirect the trigonometric functions supported by Zidian. 

⚫ Include “zidian_math.h” in the source code that requires Zidian to participate in calculation. 

This application is described in detail with reference to the SDK driverlib routine 

zidian_ex1_math. 

The routine uses Zidian to calculate and test sqrt, sin, cos, atan, and atan2. The specific code is 

as follows: 

Since these functions have been packaged in the “zidian_math.h” file, to use Zidian to calculate 

these functions, you only need to quote “zidian_math.h” directly in the header file. 

#include "zidian_math.h" 

 

// 

// Main 

// 

void example_main(void) 

{ 

    volatile float x, y; 

    uint16_t i; 

 

    // 

    // Test1 sqrtf 

    // 

    x = 0.81f; 

 

    GET_DWT_CYCLE_COUNT(dwtCycleCounts[0],trace1Result[0] = sqrtf(x)); 

     

    for(i = 0; i < COUNT; i++)     

    {                             

        trace1Result[i] = sqrtf(x); 

    }; 

 

    // 

    // Test2 sinf 

    // 

    x = PI / 2; 

    GET_DWT_CYCLE_COUNT(dwtCycleCounts[1],trace2Result[1] = sinf(x)); 

     

    for(i = 0; i < COUNT; i++)        for(i = 0; i < COUNT; i++)   

http://www.geehy.com/


Document No.: AN1132                                                 

 
www.geehy.com                                                                                Page 8 

    {                             

        trace2Result[i] = sinf(x); 

    }; 

 

    // 

    // Test3 cosf 

    // 

    x = PI / 4; 

    GET_DWT_CYCLE_COUNT(dwtCycleCounts[2], trace3Result[2] = cosf(x)); 

     

    for(i = 0; i < COUNT; i++)        for(i = 0; i < COUNT; i++)   

    {                             

        trace3Result[i] = cosf(x); 

    }; 

 

    // 

    // Test4 atanf 

    // 

    x = 5.0f; 

    GET_DWT_CYCLE_COUNT(dwtCycleCounts[3], trace4Result[3] = atanf(x)); 

     

    for(i = 0; i < COUNT; i++)     

    {                             

        trace4Result[i] = atanf(x); 

    }; 

 

    // 

    // Test5 atan2f 

    // 

    x = 5.0f; 

    y = 10.0f; 

    GET_DWT_CYCLE_COUNT(dwtCycleCounts[4], trace5Result[4] = atan2f(y, x)); 

     

    for(i = 0; i < COUNT; i++) 

    { 

        trace5Result[i] = atan2f(y, x); 

    }; 

 

    // 

    // Loop 

    // 

    for(;;) 

http://www.geehy.com/


Document No.: AN1132                                                 

 
www.geehy.com                                                                                Page 9 

    { 

    } 

} 

3.3.2 Combining Math library with Zidian to Accelerate Computation 

To use the Zidian acceleration function in the math library to accelerate computation, the 

specific steps are as follows: 

⚫ Enable compiler support 

⚫ Add the “__ZIDIAN_FCAU__” macro under the C/C++ tab in the engineering configuration 

to redirect the mathematical library functions supported by Zidian. 

Take the FPUfastRTS routine as an example, and use Zidian for computation acceleration. 

Since the sin and cos functions are packaged in the FPUfastRTS library, if the 

“__ZIDIAN_FCAU__” macro is not added in the engineering configuration, calling such 

functions will use the functions in the FPUfastRTS library. 

To use Zidian to accelerate computation, it is required to add the corresponding macro in the 

option under the C/C++ tab of the corresponding engineering configuration, and then call the 

objective function. 

Figure 3 Using Zidian for Acceleration in Math Library 

 

After enabling compiler support and adding the __ZIDIAN_FCAU__ macro, directly call the 

corresponding function. The specific code is as follows: 

    in.f32   = test_input[i]; 

http://www.geehy.com/


Document No.: AN1132                                                 

 
www.geehy.com                                                                                Page 10 

 

    // Run the calculation function and measure the DWT cycle count simultaneously 

    GET_DWT_CYCLE_COUNT(dwtCycleCounts[0], out.f32  = atanf(in.f32)); 

 

    test_output[i] = out.f32; 

 

http://www.geehy.com/


Document No.: AN1132                                                 

 
www.geehy.com                                                                                Page 11 

 Revision 

 

Table 5 Document Revision History 

Date Version Change History 

January, 2025 1.0 New 

 

 

 

  

http://www.geehy.com/


Document No.: AN1132                                                 

 
www.geehy.com                                                                                Page 12 

Statement 

 

This document is formulated and published by Geehy Semiconductor Co., Ltd. (hereinafter 

referred to as “Geehy”). The contents in this document are protected by laws and regulations of 

trademark, copyright and software copyright. Geehy reserves the right to make corrections and 

modifications to this document at any time. Read this document carefully before using Geehy 

products. Once you use the Geehy product, it means that you (hereinafter referred to as the 

“users”) have known and accepted all the contents of this document. Users shall use the Geehy 

product in accordance with relevant laws and regulations and the requirements of this 

document. 

1. Ownership 

This document can only be used in connection with the corresponding chip products or 

software products provided by Geehy. Without the prior permission of Geehy, no unit or 

individual may copy, transcribe, modify, edit or disseminate all or part of the contents of this 

document for any reason or in any form. 

The “极海” or “Geehy” words or graphics with “®” or “TM” in this document are trademarks 

of Geehy. Other product or service names displayed on Geehy products are the property of 

their respective owners. 

2. No Intellectual Property License 

Geehy owns all rights, ownership and intellectual property rights involved in this document. 

Geehy shall not be deemed to grant the license or right of any intellectual property to users 

explicitly or implicitly due to the sale or distribution of Geehy products or this document. 

If any third party’s products, services or intellectual property are involved in this document, 

it shall not be deemed that Geehy authorizes users to use the aforesaid third party’s products, 

services or intellectual property. Any information regarding the application of the product, Geehy 

hereby disclaims any and all warranties and liabilities of any kind, including without limitation 

warranties of non-infringement of intellectual property rights of any third party, unless otherwise 

agreed in sales order or sales contract. 

3. Version Update 

http://www.geehy.com/


Document No.: AN1132                                                 

 
www.geehy.com                                                                                Page 13 

Users can obtain the latest document of the corresponding models when ordering Geehy 

products.  

If the contents in this document are inconsistent with Geehy products, the agreement in the 

sales order or the sales contract shall prevail. 

4. Information Reliability 

The relevant data in this document are obtained from batch test by Geehy Laboratory or 

cooperative third-party testing organization. However, clerical errors in correction or errors 

caused by differences in testing environment may occur inevitably. Therefore, users should 

understand that Geehy does not bear any responsibility for such errors that may occur in this 

document. The relevant data in this document are only used to guide users as performance 

parameter reference and do not constitute Geehy’s guarantee for any product performance. 

Users shall select appropriate Geehy products according to their own needs, and 

effectively verify and test the applicability of Geehy products to confirm that Geehy products 

meet their own needs, corresponding standards, safety or other reliability requirements. If 

losses are caused to users due to user’s failure to fully verify and test Geehy products, Geehy 

will not bear any responsibility. 

5. Legality 

USERS SHALL ABIDE BY ALL APPLICABLE LOCAL LAWS AND REGULATIONS WHEN 

USING THIS DOCUMENT AND THE MATCHING GEEHY PRODUCTS. USERS SHALL 

UNDERSTAND THAT THE PRODUCTS MAY BE RESTRICTED BY THE EXPORT, RE-

EXPORT OR OTHER LAWS OF THE COUNTRIES OF THE PRODUCTS SUPPLIERS, 

GEEHY, GEEHY DISTRIBUTORS AND USERS. USERS (ON BEHALF OR ITSELF, 

SUBSIDIARIES AND AFFILIATED ENTERPRISES) SHALL AGREE AND PROMISE TO ABIDE 

BY ALL APPLICABLE LAWS AND REGULATIONS ON THE EXPORT AND RE-EXPORT OF 

GEEHY PRODUCTS AND/OR TECHNOLOGIES AND DIRECT PRODUCTS. 

6. Disclaimer of Warranty 

THIS DOCUMENT IS PROVIDED BY GEEHY "AS IS" AND THERE IS NO WARRANTY 

OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE 

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, TO 

THE EXTENT PERMITTED BY APPLICABLE LAW.  

http://www.geehy.com/


Document No.: AN1132                                                 

 
www.geehy.com                                                                                Page 14 

GEEHY'S PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED FOR 

USE AS CRITICAL COMPONENTS IN MILITARY, LIFE-SUPPORT, POLLUTION CONTROL, 

OR HAZARDOUS SUBSTANCES MANAGEMENT SYSTEMS, NOR WHERE FAILURE 

COULD RESULT IN INJURY, DEATH, PROPERTY OR ENVIRONMENTAL DAMAGE. 

IF THE PRODUCT IS NOT LABELED AS "AUTOMOTIVE GRADE," IT SHOULD NOT BE 

CONSIDERED SUITABLE FOR AUTOMOTIVE APPLICATIONS. GEEHY ASSUMES NO 

LIABILITY FOR THE USE BEYOND ITS SPECIFICATIONS OR GUIDELINES. 

THE USER SHOULD ENSURE THAT THE APPLICATION OF THE PRODUCTS 

COMPLIES WITH ALL RELEVANT STANDARDS, INCLUDING BUT NOT LIMITED TO 

SAFETY, INFORMATION SECURITY, AND ENVIRONMENTAL REQUIREMENTS. THE USER 

ASSUMES FULL RESPONSIBILITY FOR THE SELECTION AND USE OF GEEHY 

PRODUCTS. GEEHY WILL BEAR NO RESPONSIBILITY FOR ANY DISPUTES ARISING 

FROM THE SUBSEQUENT DESIGN OR USE BY USERS. 

7. Limitation of Liability 

IN NO EVENT, UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN 

WRITING WILL GEEHY OR ANY OTHER PARTY WHO PROVIDES THE DOCUMENT AND 

PRODUCTS "AS IS", BE LIABLE FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, 

DIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR 

INABILITY TO USE THE DOCUMENT AND PRODUCTS (INCLUDING BUT NOT LIMITED TO 

LOSSES OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED 

BY USERS OR THIRD PARTIES). THIS COVERS POTENTIAL DAMAGES TO PERSONAL 

SAFETY, PROPERTY, OR THE ENVIRONMENT, FOR WHICH GEEHY WILL NOT BE 

RESPONSIBLE. 

8. Scope of Application  

The information in this document replaces the information provided in all previous versions 

of the document.  

© 2025 Geehy Semiconductor Co., Ltd. - All Rights Reserved 

 

http://www.geehy.com/

	1 Introduction
	2 Zidian Overview
	2.1 ICAU and FCAU
	2.2 CDE Built-in Functions

	3 Using Zidian to Accelerate Computation
	3.1 zidian_math.h
	3.2 Compiler Support
	3.2.1 MDK-ARM (AC6)
	3.2.2 IAR（ICC）

	3.3 Software Design Examples
	3.3.1 Combining driverlib with Zidian to accelerate computation
	3.3.2 Combining Math library with Zidian to Accelerate Computation


	4 Revision

